Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Application of quasi-Monte Carlo and importance sampling to Monte Carlo-based fault tree quantification for seismic probabilistic risk assessment of nuclear power plants

Kubo, Kotaro; Tanaka, Yoichi; Hakuta, Yuto*; Arake, Daisuke*; Uchiyama, Tomoaki*; Muramatsu, Ken

Mechanical Engineering Journal (Internet), 10(4), p.23-00051_1 - 23-00051_17, 2023/08

The significance of probabilistic risk assessments (PRAs) of nuclear power plants against external events was re-recognized after the Fukushima Daiichi Nuclear Power Plant accident. Regarding the seismic PRA, handling correlated failures of systems, components, and structures (SSCs) is very important because this type of failure negatively affects the redundancy of accident mitigation systems. The Japan Atomic Energy Research Institute initially developed a fault tree quantification methodology named the direct quantification of fault tree using Monte Carlo simulation (DQFM) to handle SSCs' correlated failures in detail and realistically. This methodology allows quantifying the top event occurrence probability by considering correlated uncertainties related to seismic responses and capacities with Monte Carlo sampling. The usefulness of DQFM has already been demonstrated. However, improving its computational efficiency would allow risk analysts to perform several analyses. Therefore, we applied quasi-Monte Carlo and importance sampling to the DQFM calculation of simplified seismic PRA and examined their effects. Specifically, the conditional core damage probability of a hypothetical pressurized water reactor was analyzed with some assumptions. Applying the quasi-Monte Carlo sampling accelerates the convergence of results at intermediate and high ground motion levels by an order of magnitude over Monte Carlo sampling. The application of importance sampling allows us to obtain a statistically significant result at a low ground motion level, which cannot be obtained through Monte Carlo and quasi-Monte Carlo sampling. These results indicate that these applications provide a notable acceleration of computation and raise the potential for the practical use of DQFM in risk-informed decision-making.

Journal Articles

Neutron importance estimation via new recursive Monte Carlo method for deep penetration neutron transport

Tuya, D.; Nagaya, Yasunobu

Nuclear Science and Engineering, 15 Pages, 2023/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In Monte Carlo neutron transport calculations for local response or deep penetration problems, some estimation of an importance function is generally required in order to improve their efficiency. In this work, a new recursive Monte Carlo (RMC) method, which is partly based on the original RMC method, for estimating an importance function for local variance reduction (i.e., source-detector type) problems has been developed. The new RMC method has been applied to two sample problems of varying degrees of neutron penetrations, namely a one-dimensional iron slab problem and a three-dimensional concrete-air problem. The biased Monte Carlo calculations with variance reduction parameters based on the obtained importance functions by the new RMC method have been performed to estimate detector responses in these problems. The obtained results are in agreement with those by the reference unbiased Monte Carlo calculations. Furthermore, the biased calculations offered an increase in efficiency on the order of 1 to 10$$^{4}$$ in terms of the figure of merit (FOM). The results also indicated that the efficiency increased as the neutron penetration became deeper.

Journal Articles

A Scoping study on the use of direct quantification of fault tree using Monte Carlo simulation in seismic probabilistic risk assessments

Kubo, Kotaro; Fujiwara, Keita*; Tanaka, Yoichi; Hakuta, Yuto*; Arake, Daisuke*; Uchiyama, Tomoaki*; Muramatsu, Ken*

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 8 Pages, 2022/08

After the Fukushima Daiichi Nuclear Power Plant accident, the importance of conducting probabilistic risk assessments (PRAs) of external events, especially seismic activities and tsunamis, was recognized. The Japan Atomic Energy Agency has been developing a computational methodology for seismic PRA, called the direct quantification of fault tree using Monte Carlo simulation (DQFM). When appropriate correlation matrices are available for seismic responses and capacities of components, the DQFM makes it possible to consider the effect of correlated failures of components connected through AND and/or OR gates in fault trees, which is practically difficult when methods using analytical solutions or multidimensional numerical integrations are used to obtain minimal cut set probabilities. The usefulness of DQFM has already been demonstrated. Nevertheless, a reduction of the computational time of DQFM would allow the large number of analyses required in PRAs conducted by regulators and/or operators. We; therefore, performed scoping calculations using three different approaches, namely quasi-Monte Carlo sampling, importance sampling, and parallel computing, to improve calculation efficiency. Quasi-Monte Carlo sampling, importance sampling, and parallel computing were applied when calculating the conditional core damage probability of a simplified PRA model of a pressurized water reactor, using the DQFM method. The results indicated that the quasi-Monte Carlo sampling works well at assumed medium and high ground motion levels, importance sampling is suitable for assumed low ground motion level, and that parallel computing enables practical uncertainty and importance analysis. The combined implementation of these improvements in a PRA code is expected to provide a significant acceleration of computation and offers the prospect of practical use of DQFM in risk-informed decision-making.

Journal Articles

Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations

Zheng, X.; Tamaki, Hitoshi; Sugiyama, Tomoyuki; Maruyama, Yu

Reliability Engineering & System Safety, 223, p.108503_1 - 108503_12, 2022/07

 Times Cited Count:17 Percentile:91.72(Engineering, Industrial)

Journal Articles

Improvements to a probabilistic fracture mechanics code for evaluating the integrity of a RPV under transient loading

Li, Y.*; Kato, Daisuke*; Shibata, Katsuyuki; Onizawa, Kunio

International Journal of Pressure Vessels and Piping, 78(4), p.271 - 282, 2001/04

 Times Cited Count:5 Percentile:41.36(Engineering, Multidisciplinary)

no abstracts in English

JAEA Reports

An Upgraded version of the nucleon meson transport code: NMTC/JAERI97

Takada, Hiroshi; Yoshizawa, Nobuaki*; Kosako, Kazuaki*; *

JAERI-Data/Code 98-005, 101 Pages, 1998/02

JAERI-Data-Code-98-005.pdf:3.57MB

no abstracts in English

Journal Articles

Reactor shielding design of the High Temperature Engineering Test Reactor; Application of 3-dimensional Monte Carlo code MCNP to shielding analysis for thick and complicated structure

Murata, Isao; Shindo, Ryuichi; Shiozawa, Shusaku

Proc. of the 8th Int. Conf. on Radiation Shielding, p.365 - 370, 1994/00

no abstracts in English

Journal Articles

An Importance quantification technique in uncertainty analysis for computer models

Ishigami, Tsutomu; Homma, Toshimitsu

Proc. of lst Int. Symp. on Uncertainty Modeling and Analysis, p.398 - 403, 1990/12

no abstracts in English

JAEA Reports

Current status of uncertainty analysis methods for computer models

Ishigami, Tsutomu

JAERI-M 89-190, 66 Pages, 1989/11

JAERI-M-89-190.pdf:1.5MB

no abstracts in English

9 (Records 1-9 displayed on this page)
  • 1